Summary of Michelle McClure's presentation:

Masking population status: an exploration of a simple model

Issue: hatchery strays can make a system appear to be self-sustaining when it is not.

Initial population size: 1000 200 hatchery strays per generation, until generation 50 0 hatchery strays after generation 50

Masked populations can appear to be:

- stable
- declining
- increasing

Declines due to:

- overharvest
- habitat degradation
- negative effects of hatchery releases
- other factors

may be masked.

Willamette River chinook and steelhead populations

- large hatchery influence
- substantial habitat loss and degradation
- sizeable harvest
- 1. Estimate replacement rate (R) and "quasi-extinction" risk of the population, including natural spawners of hatchery origin.
- 2. Estimate minimum replacement rate, without natural spawners of hatchery origin.
- 3. Estimate "quasi-extinction" risk with minimum replacement rate.

Naturally spawning McKenzie River spring Chinook salmon (above Leaburg dam,)

1970-1998 natural spawners

ODFW estimates of proportion of hatchery spawners in 1994-1998

With natural spawners of hatchery origin,

$$R = 1.09 (0.91 - 1.30)$$

Quasi-extinction risk:

In 10 yrs:
$$2 \times 10^{-7}$$
 $(0.003-1.2\times 10^{-11})$ In 100 yrs: 0.15 $(0.99-0.0002)$

BUT:

Replacement rate may be as low as

Apparent R - % spawners of hatchery origin

$$= 1.09 - 0.23 = 0.86$$

Quasi-extinction risk falls in the following range:

	Maximum R	Minimum R
10 yrs	2 x 10 ⁻⁷	0.0003
	$(0.003-1.2x1 0^{-11})$	$(0.07-1.7x10^{-6})$
25 yrs	0.001	0.369
	$(0.54-1.6 \times 10^{-6})$	(0.92-0.02)
100 yrs	0.15	0.999
	(0.99-0.0002)	$(1-3.2x10^{-5})$

Cannot tell with available data.

It gets worse.

Populations with no apparent spawners of hatchery origin can still be dependent on supplementation.

Size of population A influenced by:

- migration rate
- replacement rate
- number of hatchery fish naturally spawning

Size of population B influenced by:

- migration rate
- replacement rate
- size of population A

Most likely in populations

- with low abundance
- some distance from the hatchery

Calapooia River Steelhead

- low abundance (mean over the last 5 years = 114)
- some distance from N. Santiam R. hatchery
- few spawners of hatchery origin

Apparent R = 1.06 (0.79-1.43)

Quasi-extinction risk:

In 10 yrs
$$0.02$$

 $(0.12 - 2x10^{-6})$
In 100 yrs 0.90
 $(0.99-0.001)$

Given:

- proportion of hatchery spawners in N. Santiam River (~15%)
- estimated stray rate (2%)
- current replacement rate of N. Santiam stock (~0.96)

Replacement rate for the Calapooia population may be as low as 0.54

Quasi-extinction risk range:

	Maximum R	Minimum R
10 yrs	0.02	0.96
	$(0.12-2.1\times10^{-6})$	(0.99-0.09)
25 yrs	0.00092	1
	$(0.83-1.6x10^{-7})$	(1-0.67)
100 yrs	0.90	1
	(0.99-0.001)	

Monitoring is a critical component of any supplementation program.

Important elements of a monitoring program:

- 1. Number of natural spawners of hatchery origin.
- 2. Stage-specific productivity (e.g. natural smolt production)
- 3. Measures of factors that might lead to decline (e.g. habitat quality, harvest rates)